





#### Disclaimer

This document is drafted by OPENEDGES Technology, Inc. (the 'Company" or "OPENEDGES") for the purpose of providing information at presentations to be provided for institutional and individual investors.

Any act of divulging, copying, or redistributing this document is prohibited. Your attendance at this presentation will be deemed as acceptance of compliance with the above restrictions, and any violation of the applicable restrictions may constitute a breach of the Financial Investment Services and Capital Markets Act.

None of the "forecast information" contained herein has been subject to verification. Considering that such forecast information is necessarily about future events, the relevant information concerns the Company's future management status and financial performance and thus includes certain expressions such as 'expected', 'forecast', 'planned', 'anticipated', '(E)' or the like. The aforesaid "forecast information" is influenced by factors such as fluctuations in management conditions, so actual future performance may significantly differ from the statements as specified or implied in such "forecast information".

Please understand that any forecasts are drafted as of the date of presentation in consideration of the market conditions and the Company's management directions, etc. and are subject to change based on the market condition fluctuations and strategic modifications.

It is hereby notified that the Company and its officers will not assume any liabilities for losses arising out of the utilization of this document, whether caused by negligence or otherwise.

This document is not intended for offering, sales, sale and purchase, and subscription for shares, and no part of this document may be used as a basis or ground for related agreements and arrangements or investment decisions.

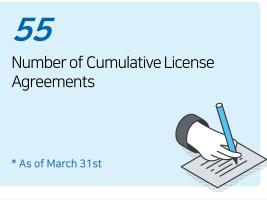


## The Future of Al Computing

#### **Table of Contents**

Openedges Technology At a Glance Prologue

Structural Growth of System Semiconductor Market


OPENEDGES Technology, as Korea's most renowned Al semiconductor IP design company **03**Business
Performance

**Appendix** 



#### Openedges Technology at a Glance



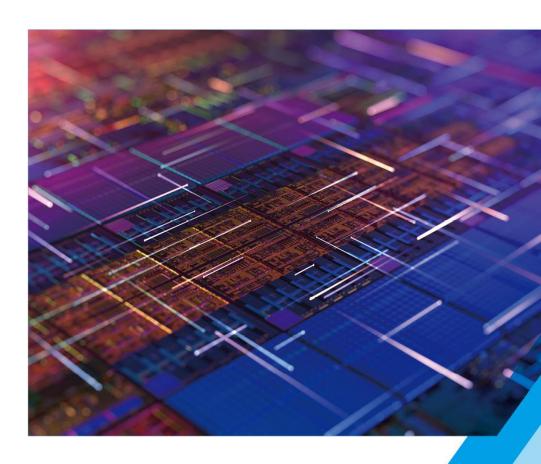




#### Al for Everyone, Everywhere



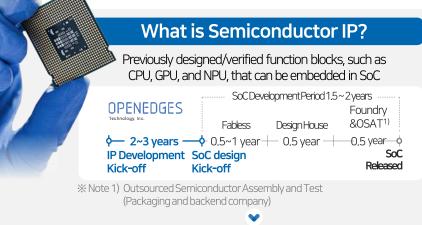




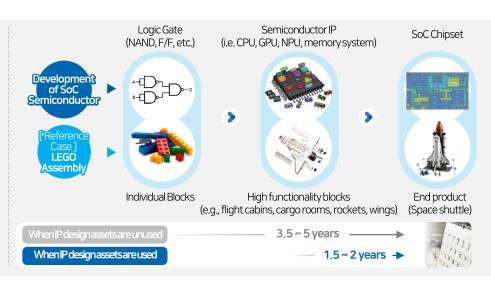


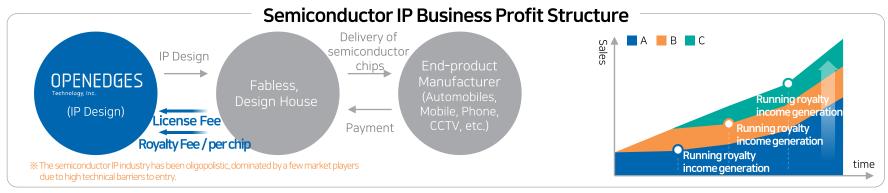



## **Prologue**


OPENEDGES Technology's Business Areas

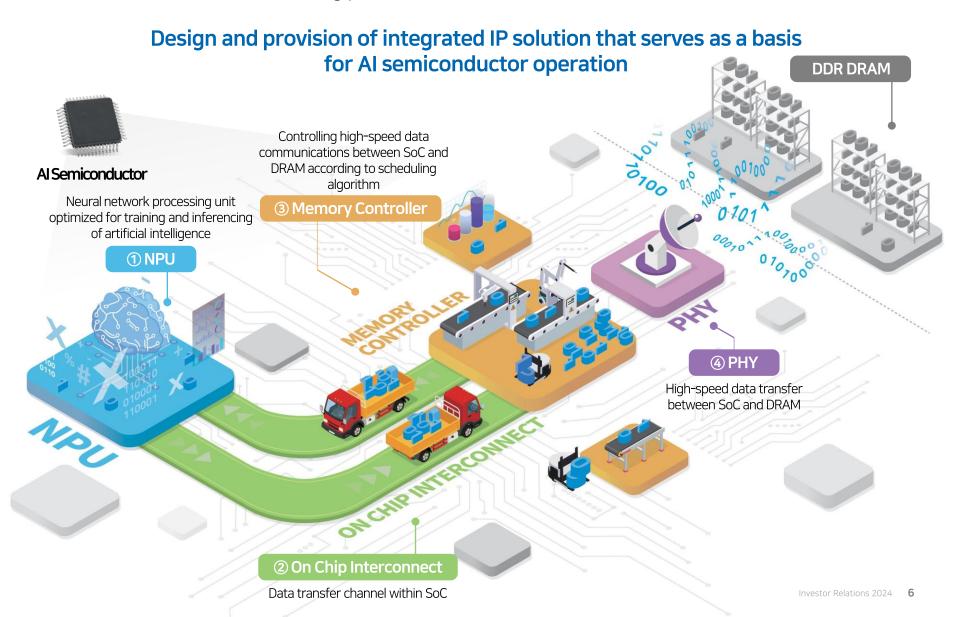






#### OPENEDGES Technology's Business Areas ①

Semiconductor IP is a ready-made solution requiring high-level technologies that enable faster development of SoC (System on Chip) such as AI semiconductors, reduce costs, and mitigate the risk of failure risks in development that can cost \$100 million




Reduction in SoC design time and cost for fabless companies







#### OPENEDGES Technology's Business Areas ②

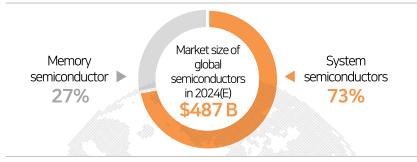




# O1 Structural Development of System Semiconductor Market

01. Growth of Al Semiconductor & IP Market

02. Roles of Semiconductor IP Design Company

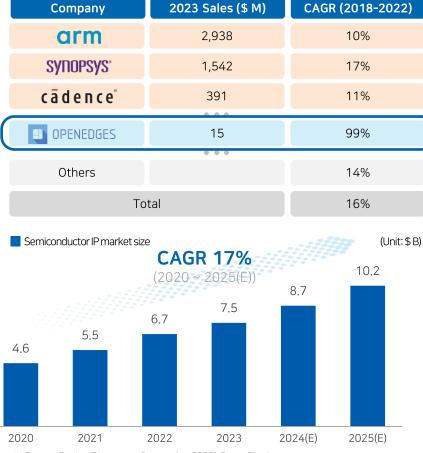





#### 01 | Growth of Global System Semiconductor Market


## Contrary to memory semiconductors, system semiconductors are continuing their steady growth

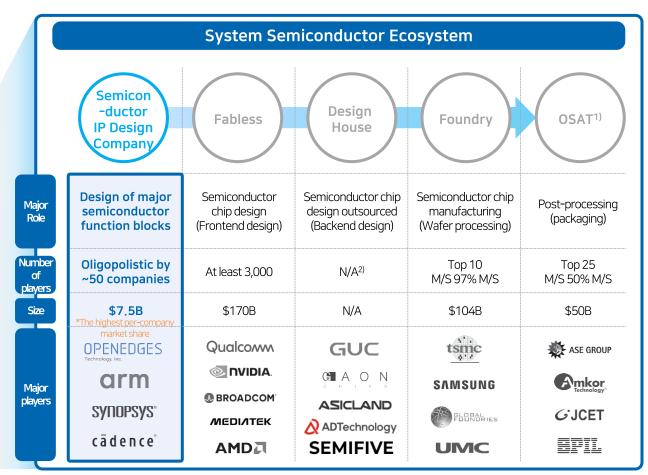
#### Prospects for Global Semiconductor Market 2024




Source: WSTS, Nov 2023 (Excluding Optoelectronics, Discrete Semiconductors and sensors)

#### Prospects of Global AI Semiconductor Market




#### Global Semiconductor IP market forecast

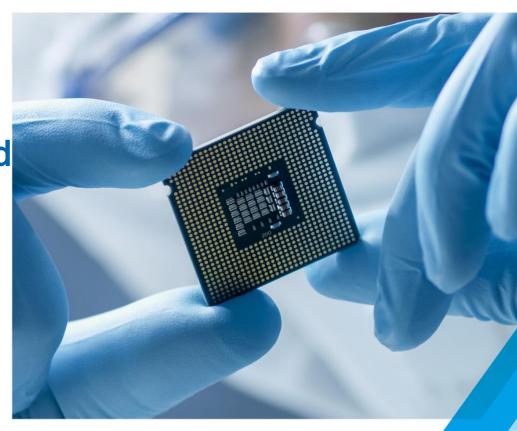




#### 03 | Roles of Semiconductor IP Design Companies

## Semiconductor IP companies aim to develop and supply function blocks as needed by Fabless and Design House in a proactive manner.








## 02

### OPENEDGES Technology, as Korea's most renowned Al semiconductor IP design company

- O1. The Overview of OPENEDGES's Core Competitiveness
- 02. A Global Team of Professionals
- 03. Industry's Highest Technological Competitiveness
- 04. Verified Global Track Records
- 05. Business Partnership with Global Enterprises





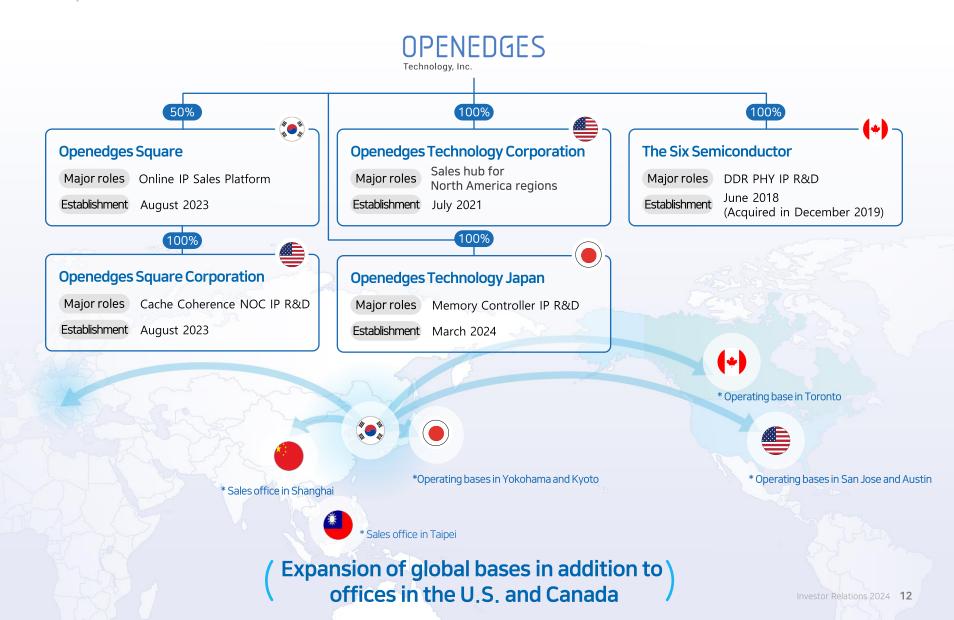
#### 01 | The Overview of OPENEDGES' Core Competitiveness

#### **OPENEDGES** holds the key success factors

to become a global leader in the AI semiconductor IP market






**Industry's** highest technological competitiveness







#### 02 | A Global Team of Professionals – Global Presence





#### 02 | A Global Team of Professionals

#### Leadership of industry-leading experts with over 20 years of experience from Samsung Electronics/SK Hynix, and more.



#### **R&D** personnel

Among the total personnel (166 team members)

86%

143 **R&D** personnel

Percentage of Ph.D. and Ph.D. M,S, degree holders (72 members) among the R&D personnel **50**%





Korea Canada (110 members) (44members)







Representative

Director/CEO

Ph.D. Candidate in Electrical and Computer Engineering, Seoul National University

'17-Present: Representative Director, OPENEDGES Technology,

'08~'15: Principal Researcher, Samsung Electronics (Exynos Development) '07~'08: Samsung Advanced Institute of Technology



Jake Choi NPUTeam Head



SAMSUNG SAMSUNG STATESTICAL OF TECHNOLOGY

SK hynix | SAMSUNG

Ph.D. in Electrical and Computer Engineering, Purdue University '18 ~ Present: NPU Team Head, OPENEDGES Technology, Inc.

'15~'18: Principal Researcher, SK Hynix

'09 ~ '14: Architecture Lab Part Head, Samsung Electronics



Richard Fund TSS/CEO

#### AMD | PERASO

M.S. in Electrical and Electronic Engineering, Univ. of Toronto

'18 ~ Present: CEO, The Six Semiconductor

'12~'18: Silicon Director, etc., Peraso Technologies

'00~'11: PHY Analog Design Manager, AMD



OSC/VP

of Engineering

ARTERÍS [ AMD]



M.S. in Electrical and Electronic Engineering, Univ. of Memphis '22 ~ Present: VP of Engineering, OPENEDGES SQUARE

'20~'22: Arteris IP Senior Director of Engineering

'00 ~ '21: Intel. Juniper Networks, AMD etc.



Cody Hwang R&D Center Head / CTO / Co-founder







M.S.in Electrical Engineering, Seoul National University

- 2017-Present: CTO, OPENEDGES Technology, Inc.
- 2010-2015: CTO, CodeHolics
- 2000-2010: Daewoo Electronics, Chips & Media



Takashi Yamada OTJ/Reginal VP

socionext Panasonic

B,A in Electrical Engineering, University of Tokyo Denki '24~ Present Openedges Technology Japan Regional VP '15~'24 SOCIONEXT Inc., Principal Engineer '88~'15 PANASONIC Corporation



Ricky Lau TSS/CTO

AMD SYNOPSYS\*

M.S. in Electrical and Electronic Engineering, Univ. of Toronto '18-Present: CTO, The Six Semiconductor '14~'18: PHY Digital Design Engineer, Synopsys '03 ~ '14: PHY Analog Design Engineer, etc., AMD



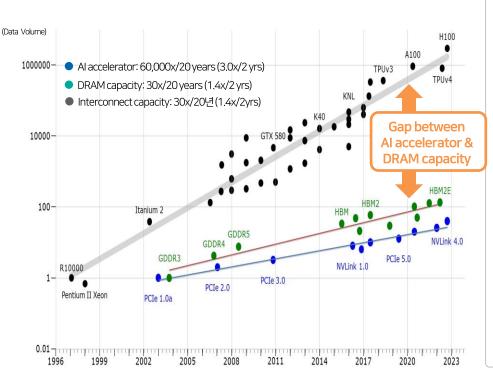
Niranian Coorav OSC/Chief Architect

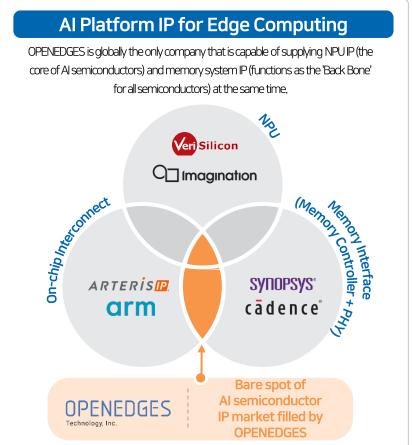
(intel

M, S, in Electrical and Computer Engineering, Northeastern University

'24 ~ Present: OPENEDGES SQUARE, Chief Architect

'95 ~ '24: Intel, Principal Engineer





#### 03 | Industry's Highest Technological Competitiveness ①

#### Al semiconductors are characterized as 'Data Intensive Computing' → Most optimize NPU and memory systems in edge AI with limited resources

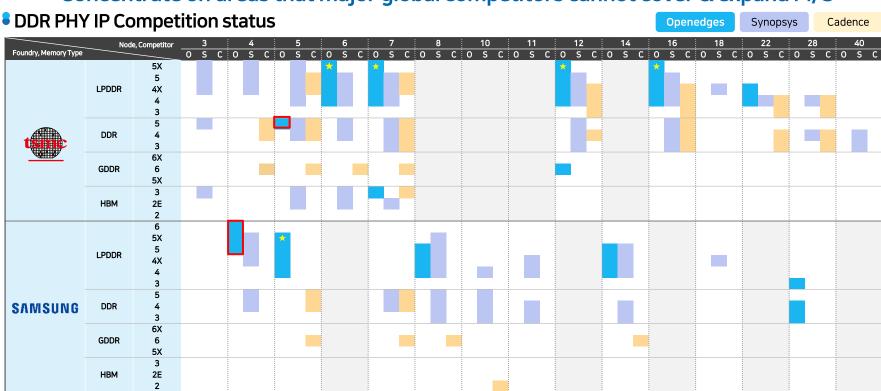
OPENEDGES is the only global leading AI semiconductor IP platform provider

The gap between the required data processing volume and the capacity provided by DRAMs has increased due to the development of AI accelerator technologies








#### 03 | Industry's Highest Technological Competitiveness ③ Leading the market through the development of cutting-edge technology

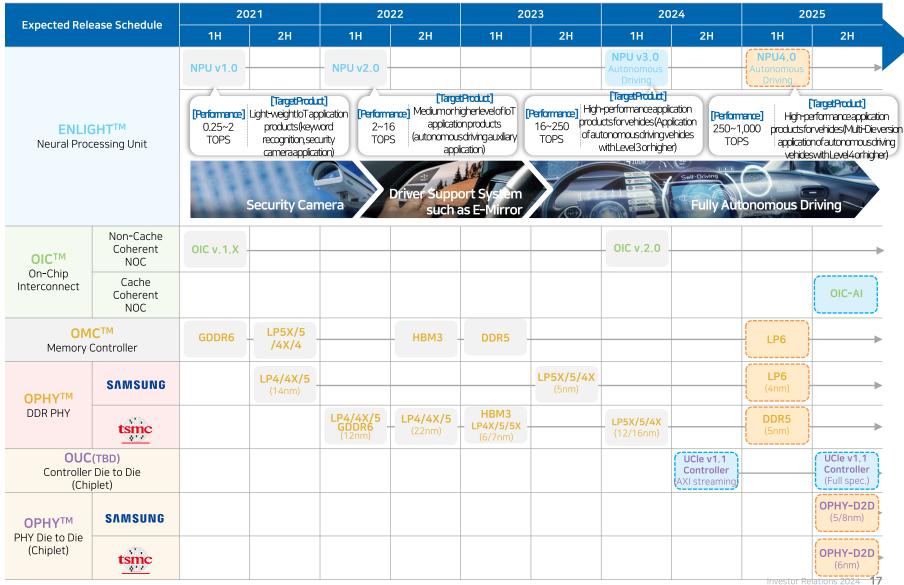
| Division                              | IP                                   | Description                      | Development status            | Remark                                                                                        |
|---------------------------------------|--------------------------------------|----------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------|
|                                       |                                      | ENLIGHT™-Light (0.25 ~ 2 TOPS)   | Now                           | Lightweight IoT applications (Keyword recognition, security camera application)               |
| Al Platform IP<br>Solution            | ENLIGHT™<br>(Neural Processing Unit) | ENLIGHT™-Classic (2 ~ 16 TOPS)   | Now                           | Intermediate IoT applications (ADAS)                                                          |
| for Edge<br>Computing                 |                                      | ENLIGHT™-Pro (16 ~ 250 TOPS)     | Now<br>(Released in Apr. '24) | Automotive high-performance applications (Level 3 or higher self-driving vehicle application) |
|                                       |                                      | ENLIGHT™-Hyper (250 ~ 1000 TOPS) | In the future                 | Automotive high-performance applications (Level 4 or higher self-driving vehicle application) |
|                                       |                                      | DDR4/3, LPDDR4X/4/3              | Now                           |                                                                                               |
|                                       |                                      | LPDDR5X/5/4X/4                   | Now                           | Current Mainstream Technology                                                                 |
|                                       | ОМС™                                 | НВМ3                             | Now                           | Server and ultra-high-performance products                                                    |
|                                       | (DDR Memory                          | DDR5                             | Now                           | Current Mainstream Technology                                                                 |
|                                       | Controller)                          | GDDR6                            | Now                           | High-performance AI product                                                                   |
|                                       |                                      | GDDR7                            | In the future                 | Next-generation High-performance AI product                                                   |
|                                       |                                      | LPDDR6                           | In the process                | Next-generation Mainstream Technology                                                         |
|                                       |                                      | LPDDR4X/4                        | Now                           | TSMC 22nm Nodes                                                                               |
|                                       |                                      | LPDDR5X/5/4X/4                   | Now                           | TSMC 16nm Nodes                                                                               |
| Total Memory<br>System<br>Solution IP |                                      | LPDDR5X/5/4X/4                   | Now                           | TSMC 12nm Nodes                                                                               |
|                                       |                                      | GDDR6                            | Now                           | TSMC 12nm Nodes                                                                               |
|                                       |                                      | LPDDR5X/5/4X/4                   | Now                           | TSMC 6/7nm Nodes                                                                              |
| (ORBIT™)                              |                                      | НВМ3                             | Now                           | TSMC 6/7nm Nodes                                                                              |
| (ONDIT )                              | OPHY™                                | DDR5                             | Near future(~'25)             | TSMC 5nm Nodes                                                                                |
|                                       | (DDR PHY)                            | LPDDR6                           | In the future                 | TSMC 4nm(or less) Nodes                                                                       |
|                                       |                                      | LPDDR3, DDR4/3                   | Now                           | Samsung 28nm Nodes                                                                            |
|                                       |                                      | LPDDR4X/4, LPDDR5/4X/4           | Now                           | Samsung 14nm Nodes                                                                            |
|                                       |                                      | LPDDR5/4X/4                      | Now                           | Samsung 8nm Nodes                                                                             |
|                                       |                                      | LPDDR5X/5/4X/4                   | Now                           | Samsung 5nm Nodes                                                                             |
|                                       |                                      | LPDDR6                           | Near future(~'25)             | Samsung 4nm Nodes                                                                             |
|                                       |                                      | GDDR7                            | In the future                 | -                                                                                             |
|                                       | OICTM                                | OICTM                            | Now                           | Non- Cache-Coherent NoC                                                                       |
|                                       | (On-Chip-Interconnect)               | OIC™-AI                          | In the process                | Cache-Coherent NoC                                                                            |



#### 03 | Industry's Highest Technological Competitiveness @

#### Concentrate on areas that major global competitors cannot cover & expand M/S




🔲 IP to be developed, 🔀: Sole Provider

M/S expansion strategy

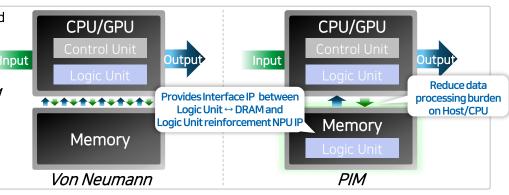
- ✓ Synopsys and Cadence are focusing on TSMC 5nm and below leading-edge processes
- ✓ OE is the only one provides LPDDR5X/5 PHY IP for various nodes
- ✓ OE is expecting customer pool through the development of PHY IP for SF 4nm & TSMC 5nm processes
- ✓ OE's PHY IP requires area less than 50% compared to competitors by providing through the test chips



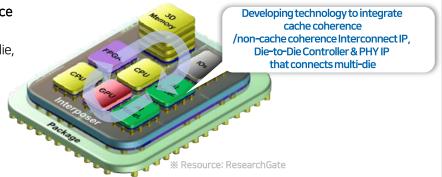
## 03 | Industry's Highest Technological Competitiveness (5) Maximize first-mover advantage of AI semiconductor integrated IP solutions






#### 03 | Industry's Highest Technological Competitiveness (6)

#### Leading the next generation of high value-added semiconductor technology expected to grow rapidly


- CXL interface can flexibly expand memory without limitations on memory standard capacity and performance dependent on existing Host/CPU
  - → Effectively supports data intensive highperformance calculations such as AI chips
- supplies IP for the design of the CXL Controller chip, the core of the CXL Memory Expander.

**Memory Controller and DDR** Memory Controller and DDR PHY IP are also required when developing the CXL Controller chip PHY IP provided when that controls the CXL Memory Expander. developing SoC CXL Memory Expande Device Memory DDR5 DRAMS Host/CPU Controller Device [CXL memory configuration]

- PIM off-loads some of the computational functions handled by the Host/CPU (von Neumann structure) and processes them in the PIM.
  - → Speed ↑, Power ↓ by simultaneous calculation & storage X Samsung is using HBM and SK Hynix is using GDDR6 for developing PIM
- Supplies Memory System IP, which is responsible for the data interface between Logic Unit and DRAM in PIM semiconductors, and NPU IP required to improve the performance of Logic Unit.

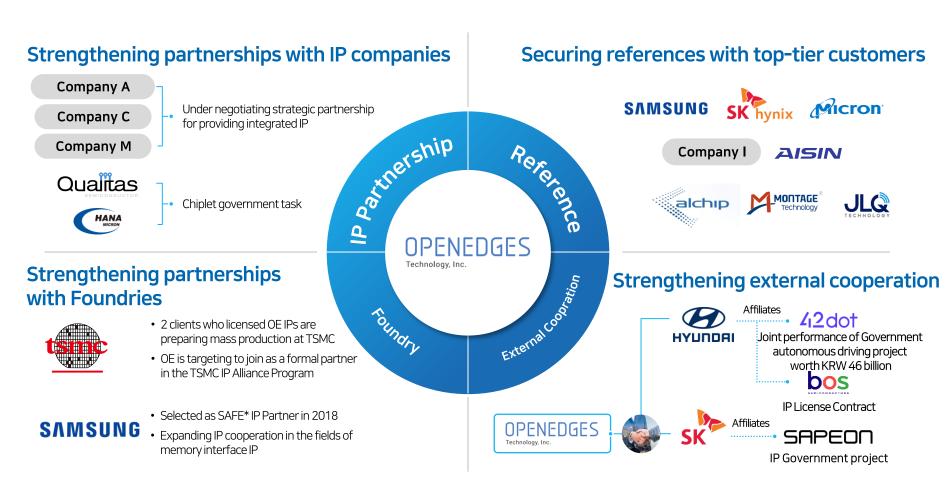


- A chiplet is a SoC that is manufactured by dividing high-performance SoC functions into multiple dies and then packaging them.
  - → SoC development cost & Risk ↓: Optimal process selection for each die, net die increase by reducing chip area
  - → Development period ↓: Independent design for each die, use of previously verified chiplets possible
- provides 'On-chip & Chip-to-Chip Interconnect IP Solution' that can implement multi-die interconnect technology beyond single-die standard interconnect IP.





#### 04 | Verified Global Track Records


#### Expanding global track record as value recognized as the essential solution in various industries





#### 05 | Business Partnership with Global Enterprises

Securing stable IP demands + Proactive response to advanced technologies and market trends



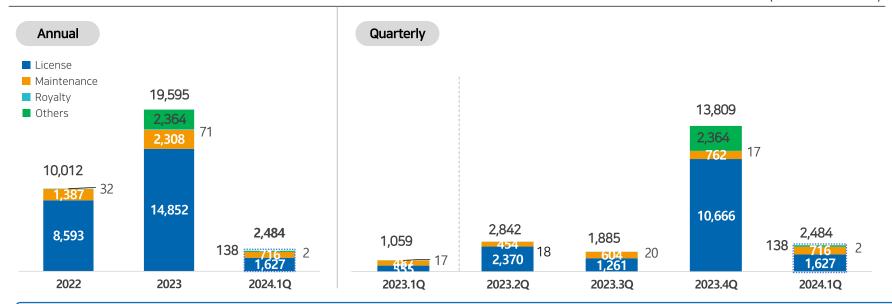
<sup>\*</sup> SAFE (Samsung Advanced Foundry Ecosystem)



## 03

#### '24 1Q Business Performance

- 01. Sales
- 02. Operating Profit(Loss)
- 03. Contract Status
- 04. Sales revenue Breakdown
- 05. Financial Summary






#### Sales Revenue

Recorded KRW 2.5 billion due to delays in new contracts ( $\triangle$ 82%, QoQ). Significant growth compared to the same period last year (135%, YoY) and expecting growth after closing license contracts currently under negotiation.

Sales status (Unit: KRW 1 million)

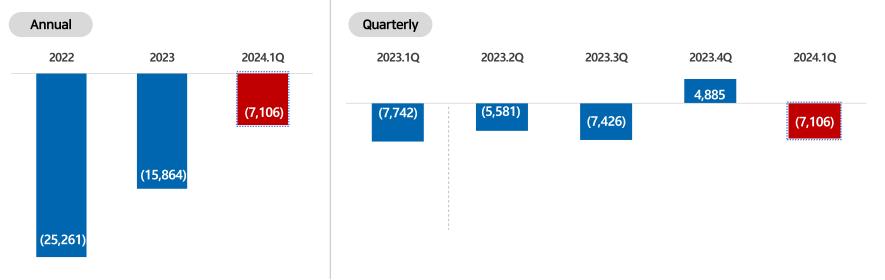


Sales **Analysis** 

- ✓ License: Due to Delay of new contracts, Sales decreased compared to 4Q23, but increased YoY
- ✓ **Maintenance:** Sales are being generated from a total 27 projects
- ✓ Royalty: Expected to continue to grow in the future due to increased mass production of chips by customers
- ✓ Others: Sales for operational and technical support services for Openedges Square






#### 02 | Operating Profit(Loss)

An operating loss of KRW 7.1 billion due to a decrease in sales, while managing R&D costs at KRW 8 to 9 bn. Quarterly.

Securing contracts under discussion will improve profitability in the near term

#### Operating Profit(Loss)

(Unit: KRW 1 million)



Operating Profit Anlaysis

- ✓ Loss due to decline in license sales, expecting turnaround when securing orders under negotiation
- ✓ Most of the R&D expenses are for developing new IP, are being managed stably at around KRW 8 to 9 billion per quarter without burdening large one-off costs.
- ✓ As a number of license contracts are currently being discussed, expecting that sales will increase, and profitability will continue to improve.



#### 03 | Contract Status

#### '24.1Q recorded unsatisfactory performance due to the delay in signing the license contracts However, expecting to increase license contracts from '24.2Q

#### Contract Status

(Unit: USD 1 million)

- ☐ '24.1Q: 3 new license contracts, worth \$1.6M
  - The average price per contract is 0.5M\$,
  - a low-performance/low-price IP-centered contracts
- ☐ As of May 16th: 5 cumulative license contracts, worth \$3.2M
  - \* '24.1Q Earning release date
  - The average price per contract is \$0.6M
  - Price slightly higher compared to the first quarter.

#### **Contract status**

| (Unit: case/\$M)          | '24.1Q   | As of 16.May<br>(Cumulative) | FY2023   |  |  |  |  |  |  |  |  |
|---------------------------|----------|------------------------------|----------|--|--|--|--|--|--|--|--|
| Numbers                   | 3        | 5                            | 12       |  |  |  |  |  |  |  |  |
| Sum of<br>Contract value  | \$1.6M   | \$3.2M                       | \$15.5M  |  |  |  |  |  |  |  |  |
| Average price of Contract | (\$0.5M) | (\$0.6M)                     | (\$1.3M) |  |  |  |  |  |  |  |  |

#### Performance Analysis and outlook

#### '24 10 Results

- ☐ Delay in signing high-performance/high-price IP contract
  - High-performance SoC projects considering Samsung 5nm and TSMC 6/7 nm are delayed
- ☐ Delay in completion of customization design project
  - Negotiation about customized IPs that supports the latest DRAMs such as HBM3 and DDR5 took longer than expected

#### 2024 Outlook

- ☐ Expect high growth in normal license sales and improve profitability
  - Steady improvements in opportunities to secure contracts from 2H23
  - Sales and profitability growth through high-performance IP contracts
- ☐ Expand due to demand for next-generation and customization
  - In addition to CXL, expanding collaboration to reduce the performance gap between AI semiconductors and DRAM, such as PIM and Chiplet
  - In addition to normal licenses, we plan to respond quickly to customization IP licenses with global top-tier companies



#### 04 | Financial Statements(Consolidated)

#### Statement of Financial Position

(Unit: KRW 1 million)

|                            |         |         | (Unit: KRW 1 million |         |  |  |  |  |  |
|----------------------------|---------|---------|----------------------|---------|--|--|--|--|--|
|                            | 1Q24    | 2023    | 2022                 | 2021    |  |  |  |  |  |
| Current Assets             | 25,086  | 29,843  | 44,304               | 29,020  |  |  |  |  |  |
| Non-current<br>Assets      | 12,218  | 14,849  | 9,552                | 7,077   |  |  |  |  |  |
| Total Assets               | 37,305  | 44,692  | 53,855               | 36,097  |  |  |  |  |  |
| Current<br>Liabilities     | 18,939  | 19,750  | 18,318               | 9,171   |  |  |  |  |  |
| Non-current<br>Liabilities | 4,103   | 4,371   | 3,288                | 6,374   |  |  |  |  |  |
| Total<br>Liabilities       | 23,041  | 24,121  | 21,606               | 15,545  |  |  |  |  |  |
| Capital                    | 2,173   | 2,146   | 2,116                | 1,653   |  |  |  |  |  |
| Capital Surplus            | 99,315  | 98,259  | 96,376               | 58,927  |  |  |  |  |  |
| Other Capital              | 3,293   | 3,577   | 2,026                | 3,007   |  |  |  |  |  |
| Retained<br>earnings       | -90,517 | -83,412 | -68,269              | -43,035 |  |  |  |  |  |
| Total Equity               | 14,263  | 20,571  | 32,249               | 20,553  |  |  |  |  |  |

#### Income Statements

(Unit: KRW 1 million)

|                                     | 1Q24   | 4Q23   | Change  | Change(%) |  |
|-------------------------------------|--------|--------|---------|-----------|--|
| Sales Revenue                       | 2,484  | 13,809 | -11,325 | -82.0     |  |
| Operating Expenses                  | 9,589  | 8,924  | 665     | 7.5       |  |
| R&D Cost                            | 7,543  | 6,439  | 1,104   | 17        |  |
| Selling General & Admin.<br>Expense | 2,046  | 2,485  | -439    | -18       |  |
| Operating Profit                    | -7,106 | 4,885  | -11,991 | N/A       |  |
| Financial Income                    | 380    | 357    | 23      | 6.4       |  |
| Financial Expenses                  | 416    | 303    | 113     | 37.3      |  |
| Other Income                        | 37     | 1,061  | -1,024  | -96.5     |  |
| Other Costs                         | 0      | 0      | 0       | 0.0       |  |
| Profit before<br>Income Tax Expense | -7,106 | 5,999  | -13,105 | N/A       |  |
| Income Tax Expense                  | 0      | 358    | -358    | N/A       |  |
| NetIncome                           | -7,106 | 5,642  | -12,748 | N/A       |  |





#### 05 | Financial Summary

#### **Financial Summary**

(Unit: KRW 1 Million)

| Consolidated                             | 2018        | 2019   | 2020    | 2021    | 1Q22   | 2Q22   | 3Q22   | 4Q22    | 2022    | 1Q23   | 2Q23   | 3Q23   | 4Q23   | 2023    | 1Q24   |
|------------------------------------------|-------------|--------|---------|---------|--------|--------|--------|---------|---------|--------|--------|--------|--------|---------|--------|
| Revenue                                  | 588         | 1,238  | 1,089   | 5,186   | 3,033  | 3,975  | 1,577  | 1,426   | 10,012  | 1,059  | 2,842  | 1,885  | 13,809 | 19,595  | 2,484  |
| License fee                              | 524         | 990    | 660     | 4,342   | 2,798  | 3,619  | 1,175  | 1,001   | 8,593   | 555    | 2,370  | 1,261  | 10,666 | 14,852  | 1,627  |
| Maintenance                              | 65          | 249    | 423     | 808     | 230    | 350    | 392    | 415     | 1,387   | 487    | 454    | 604    | 762    | 2,308   | 716    |
| Royalty                                  |             |        | 6       | 35      | 5      | 7      | 10     | 10      | 32      | 17     | 18     | 20     | 17     | 71      | 2      |
| Others                                   |             |        |         |         |        |        |        |         |         |        |        |        | 2,363  | 2,363   | 138    |
| :                                        | ·           |        |         |         |        |        |        |         |         |        |        |        |        |         |        |
| Cost and Expense                         | 1,029       | 4,422  | 8,896   | 16,241  | 5,792  | 7,293  | 7,844  | 14,344  | 35,273  | 8,801  | 8,422  | 9,311  | 8,924  | 35,458  | 9,589  |
| R&D Cost                                 | 208         | 2,347  | 6,623   | 10,654  | 3,937  | 5,361  | 6,063  | 12,349  | 27,710  | 7,052  | 6,546  | 7,146  | 6,439  | 27,184  | 7,543  |
| Selling General & Admin<br>Expense       | 821         | 2,075  | 2,273   | 5,587   | 1,855  | 1,932  | 1,782  | 1,995   | 7,563   | 1,749  | 1,876  | 2,165  | 2,485  | 8,275   | 2,046  |
| Operating Income                         | <b>△441</b> | △3,183 | △7,807  | △11,055 | △2,759 | △3,317 | △6,267 | △12,918 | △25,261 | △7,742 | △5,581 | △7,426 | 4,885  | △15,864 | △7,106 |
| Net Profit before<br>Corporate Tax Costs | △355        | △8,487 | △18,729 | △14,524 | △2,906 | △3,398 | △6,181 | △12,362 | △24,846 | △7,634 | △5,559 | △7,317 | 6,000  | △14,510 | △7,106 |
| Net Income                               | ∆374        | △8,487 | △18,729 | △14,608 | △2,906 | △3,398 | △6,178 | △12,745 | △25,227 | △7,631 | △5,557 | △7,310 | 5,642  | △14,856 | △7,106 |

<sup>\*\*</sup> Numbers are based on consolidated financial statements.